Journal of

The Chemical Society,

Chemical Communications

NUMBER 6/1978

New Dioxygen Complex of Manganese Phthalocyanine

By KIYOSHI UCHIDA, SHUICHI NAITO, MITSUYUKI SOMA, TAKAHARU ONISHI, and KENZI TAMARU (Department of Chemistry, Faculty of Science, the University of Tokyo, Hongo, Tokyo, Japan)

Summary The formation of a dioxygen complex of manganese phthalocyanine in poly(2-methyl-1-vinylimidazole)-NN-dimethylformamide solution has been demonstrated by e.s.r. and electronic spectra for the first time.

It has been reported that manganese phthalocyanine (Mn-Pc) in pyridine (Py) binds oxygen¹ and that the μ -oxo dimer (*i.e.*, Py·Mn-Pc·O·Mn-Pc·Py) is formed as the final oxygen-containing product.² In the absence of globin, haem of haemoglobin itself is also oxidized irreversibly to a μ -oxo dimer, in a process which is believed to proceed *via* a dioxygen complex.³ Here, the first spectroscopic evidence for the O₂-adduct of Mn-Pc is presented.

Electronic absorption spectra of Mn-Pc were studied in NN-dimethylformamide (DMF) containing poly(2-methyl-1-vinylimidazole) (PMVIm) at room temperature. By adding PMVIm the solubility of Mn-Pc was increased, thus avoiding its aggregation in DMF. In the absence of O_2 , the main absorption band of Mn-Pc in PMVIm (1%)-DMF was observed at 672 nm. When O_2 was introduced, a new absorption maximum appeared at 710 nm, while the band at 672 nm disappeared in a few minutes. The species which gave the band at 710 nm was stable at least for a few days at room temperature. In the absence of PMVIm, the absorption maximum appeared at 672 nm without O_2 and shifted to 710 nm on addition of O_2 . Seemingly the interaction between Mn-Pc and O_2 does not depend on the presence of PMVIm.

The e.s.r. spectra of Mn-Pc in PMVIm (1%)-DMF were measured at 77 K (Figure). In the absence of PMVIm, an attempt to observe the e.s.r. absorption for Mn-Pc $(+O_2)$ in DMF was unsuccessful owing to the low solubility of Mn-Pc for the e.s.r. measurements. The spectrum of Mn-Pc before the introduction of O_2 is shown in the Figure

FIGURE. X-band e.s.r. spectra of manganese phthalocyanine in poly(2-methyl-1-vinylimidazole) (1%)-NN-dimethylformamide at 77 K: (a) without O_2 (9.23 GHz); (b) with O_2 (9.21 GHz).

(a). The complex peak structures are partly due to the nuclear spin of Mn (5/2) and also suggest the existence of more than one chemical environment for manganese. In the presence of O₂, the complex features disappeared and a

strong peak centred at g = 2.0015 was observed (Figure b). This change is attributed to the formation of O_2^- following transfer of one electron from Mn²⁺, resulting in the formation of undetectable Mn³⁺.⁴ The absence of hyperfine structure due to Mn⁵ indicates negligible spin density on the Mn atom. Typical O_2^- complexes show e.s.r. absorption around $g_{\parallel} =$ 2.01—2.1 as well as a strong g_{\perp} peak around g_{e} (2.0023).4 However, the absorption due to g_{\parallel} is usually broad and its apparent intensity is very weak compared with g_1 . Unfortunately in the spectrum obtained (Figure b), the

identification of the g_{\parallel} component is obscured by the presence of weak peaks presumably due to unchanged Mn²⁺. Because of the apparent absence of any effect of PMVIm on the electronic spectrum of the complex, we assume that the complex has the composition (DMF)-·Mn³⁺-Pc·O₂⁻.

We thank Mr. Y. Ijuin, Sagami Chemical Research Center, for the e.s.r. measurements.

(Received, 12th September 1977; Com. 951.)

¹ J. A. Elvidge and A. B. P. Lever, Proc. Chem. Soc., 1959, 195; G. Engelsma, A. Yamamoto, E. Markham, and M. Calvin, J. Phys. Chem., 1962, 66, 2517; A. Yamamoto, L. K. Phillips, and M. Calvin, Inorg. Chem., 1968, 7, 847. ² L. H. Vogt, Jr., A. Zalkin, and D. H. Templeton, Inorg. Chem., 1967, 6, 1725. ³ F. Basolo, B. M. Hoffman, and J. A. Ibers, Accounts Chem. Res., 1975, 8, 384.

⁴ J. H. Lunsford, Catalysis Rev., 1973, 8, 135. ⁵ C. J. Weschler, B. M. Hoffman, and F. Basolo, J. Amer. Chem. Soc., 1975, 97, 5278; B. M. Hoffman, C. J. Weschler, and F. Basolo, ibid., 1976, 98, 5473.